Isolated Points of Some Sets of Bounded Cosine Families, Bounded Semigroups, and Bounded Groups on a Banach Space
نویسندگان
چکیده
We show that if the set of all bounded strongly continuous cosine families on a Banach space X is treated as a metric space under the metric of the uniform convergence associated with the operator norm on the space L (X) of all bounded linear operators on X, then the isolated points of this set are precisely the scalar cosine families. By definition, a scalar cosine family is a cosine family whose members are all scalar multiples of the identity operator. We also show that if the sets of all bounded cosine families and of all bounded strongly continuous cosine families on an infinitedimensional separable Banach space X are viewed as topological spaces under the topology of the uniform convergence associated with the strong operator topology on L (X), then these sets have no isolated points. We present counterparts of all the above results for semigroups and groups of operators, relating to both the norm and strong operator topologies.
منابع مشابه
Existence Results of best Proximity Pairs for a Certain Class of Noncyclic Mappings in Nonreflexive Banach Spaces Polynomials
Introduction Let be a nonempty subset of a normed linear space . A self-mapping is said to be nonexpansive provided that for all . In 1965, Browder showed that every nonexpansive self-mapping defined on a nonempty, bounded, closed and convex subset of a uniformly convex Banach space , has a fixed point. In the same year, Kirk generalized this existence result by using a geometric notion of ...
متن کاملON FELBIN’S-TYPE FUZZY NORMED LINEAR SPACES AND FUZZY BOUNDED OPERATORS
In this note, we aim to present some properties of the space of all weakly fuzzy bounded linear operators, with the Bag and Samanta’s operator norm on Felbin’s-type fuzzy normed spaces. In particular, the completeness of this space is studied. By some counterexamples, it is shown that the inverse mapping theorem and the Banach-Steinhaus’s theorem, are not valid for this fuzzy setting. Also...
متن کاملBounded Approximate Character Amenability of Banach Algebras
The bounded approximate version of $varphi$-amenability and character amenability are introduced and studied. These new notions are characterized in several different ways, and some hereditary properties of them are established. The general theory for these concepts is also developed. Moreover, some examples are given to show that these notions are different from the others. Finally, bounded ap...
متن کاملSome topologies on the space of quasi-multipliers
Assume that $A$ is a Banach algebra. We define the $beta-$topology and the $gamma-$topology on the space $QM_{el}(A^{*})$ of all bounded extended left quasi-multipliers of $A^{*}.$ We establish further properties of $(QM_{el}(A^{*}),gamma)$ when $A$ is a $C^{*}-$algebra. In particular, we characterize the $gamma-$dual of $QM_{el}(A^{*})$ and prove that $(QM_{el}(A^{*}),gamma)^{*},$...
متن کاملFUZZY BOUNDED SETS AND TOTALLY FUZZY BOUNDED SETS IN I-TOPOLOGICAL VECTOR SPACES
In this paper, a new definition of fuzzy bounded sets and totallyfuzzy bounded sets is introduced and properties of such sets are studied. Thena relation between totally fuzzy bounded sets and N-compactness is discussed.Finally, a geometric characterization for fuzzy totally bounded sets in I- topologicalvector spaces is derived.
متن کامل